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Abstraet-We derive a complete set of necessary optimality conditions for a class of variational problems
whose extremal solutions are associated with singularities. The use of these conditions is illustrated by two
examples involving the optimization of the shapes of elastic bodies with stiffness and stability constraints.

INTRODUCTION

A typical feature of the optimal design of a number of structural elements is the appearance of
singular points (lines in the case of two dimensional structures). At these points Oines) the
coefficients of the higher order derivatives in the differential equations governing the op
timization problem vanish. It is well-known, that the behaviour of the optimal design (shape of
the element) in the neighbourhood of these singular points (lines) has a significant influence on
the integral characteristics of the optimal solution. To illustrate this, we point to the fundamen
tal results pertaining to the investigation of solid elastic plates with a sharp edge (see, e.g. [l]).
Thus, if the thickness of the plate (in the vicinity of the sharp edge) tends to vanish at a certain
rate, the positive definiteness of the operator governing the flexure of the plate is violated, while
the spectrum of the natural frequencies of the plate ceases to be discrete. A study of the
asymptotic behaviour of the optimal solutions is also interesting from the point of developing
efficient numerical techniques for the solution of optimal design problems.

In connexion with the problem of maximizing the fundamental frequency of vibrating beams
Niordson[2J made a beginning in studying the singular behaviour of the optimal solution.
Niordson[2J, as well as the works of Karihaloo and Niordson[3, 4] and Olhoff[5] considered
cases where the position of the singular points coincides with the ends of the interval in which
the solution is sought. The behaviour of the optimal solutions in the neighbourhood of inner
singular points was studied by Olhoff[6, 7J and Karihaloo and Niordson[8].

In the case of inner singular points the number of the unknowns to be determined from the
solution of the optimization problem is increased by an amount equal to the coordinates of
these points. Significantly, the coordinates of the singular points are not defined by the
equilibrium equations or the Euler equations in the governing variables. In the earlier in
vestigations the existence of the so-called "free" parameters (coordinates of the singular points)
was either construed as a mUltiple extremality of the optimization problem or these parameters
were eliminated by making some additional assumptions. Thus, Prager and Taylor[9], in
studying the problem of maximizing the bending stiffness of a beam, removed this "non
uniqueness" by demanding continuity of the first derivative of the deflection function at the
singular points. In [10], the same continuity condition was obtained not by imposing a certain
additional demand or assumption, but as a result of maximizing the functional of the op
timization problem with respect to the "free" parameter.

As will be shown later, this "non-uniqueness" is a consequence of the fact that an
incomplete set of necessary stationary conditions was employed in these investigations. In
order to allow for the possibility of the appearance of singular points in the optimal solution it is

tA major part of this work was completed while both the authors were with the Department of Solid Mechanics, The
Technical University of Denmark. 2800 Lyngby. They thank: Drs, A. A. Mironov and N. Olhoff for useful discussions.
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important to include in the investigation the Weierstrass-Erdmann corner conditions. The latter
allow us to uniquely determine the position of the singular points. It transpires that the
requirement of continuity of the first derivative in the optimal design problems with stiffness
and stability constraints, assumed intuitively in [9], follows from an application of the
Weierstrass-Erdmann conditions to the points where there is a jump in the first derivative of
the deflection function. This very condition is valid for some other classes of problems, too.

1. NECESSARY STATIONARY CONDITIONS IN VARIATIONAL PROBLEMS WITH
NON-ADDITIVE FUNCTIONALS AND NON-SMOOTH EXTREMALS

Let us consider the following variational problem. It is required to find the vector-function
u(x) = [u I(X), ... , u"(x)] in the interval [xo, xd that renders the following non-additive functional
stationary

where

J = F(lJ,J2 , ••• , J,), (I)

k = 1,2, ... , S, (2)

Ux denotes du/dx, and so on.
For the sake of definiteness we assume that the unknown vector-function is subject, at the

ends of the interval [xo, XI], to 4n known boundary conditions, u'(xo) = ao;, ux'(xo) = (3o',
U;(XI) =al;, Ux'(XI) =(3.'(i = 1,2, ... , n); where ao', {3o\ ai', {3.', nand S are given constants, and
F and r are given functions of their arguments.

The extremum of problem (1), (2) is sought among a class of continuous functions with
piece-wise continuous first derivative. We assume that there is a jump in the derivative at some
point X= X* (xo < x*< x ,) whose position is not known beforehand but is to be determined
from the stationary condition of the functional J.

Before passing to the derivation of the necessary stationary conditions using classical
variational techniques we observe that these conditions can also be obtained from the
fundamental equations of optimal control theory (Appendix).

For the derivation of the necessary stationary conditions let us express each of the integrals
Jk (k = 1,2, ... , s) as a sum of two integrals, Jk = Jk1+ J/, taken over the intervals [xo, x*] and
[x*, xd, respectively, and write an expression for the first variation of each of these integrals.
Here it is assumed that there is only one singular point in the interval [xo, xd. The expressions
for fJJk are obtained by summing fJJk

l and 8J/ having regard to the continuity of u at the point
x = x*. Furthermore, let us expand the function F in powers of 8Jk and retain only terms of the
first order of magnitude. After some transformations, we have

Ix. 'aF(ar d ar d
2

ar) ,+ ~- -'---+-2-' 8u dx
'. k~1 aJk au' dx aux· dx au~x

i' aF[ar d ar ]+ [ ,'aF ar ]+}-8u~--,---, -8ux~---.
k~1 alk aux' dx au~x - k~1 alk au~x -

, aF [k "(, ar ,ar ,d afk )] +
-8x*~-aJ. f -~ uX -a ,+uxx -a ' -ux-d -ai .

k=l k 1=1 UX Uxx x Uxx -

Here, and in the sequel, "+" and "-" refer to the values of the corresponding quantities
evaluated at x = x* +0 and x = x* - 0, respectively, while [...]~ denotes the difference in the
limiting values of the quantity enclosed in the square brackets, i.e. [... ]~ =(.. ·t-(·· T.

Equating 81 to zero and keeping in mind the arbitrariness of functions ui(x) in the interval
[xo, xd and of 8x*, (8ux't, (8ux')-, 8u' = (8u i t = (8u i r, we obtain the Euler equation

'aF(ar d ar d
2

ar)~- -'---+-2-' =0
k~1 alk au' dx aux· dx au~x '

i = 1,2, ... , n (3)
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and the Weierstrass-Erdmann conditions at the point x = x* where there is a discontinuity in
the derivatives

1,2, ... , n (4)

(5)

(6)

The derivative aFI aJk = FI, (h h ... , Js) in the Euler eqn (3) and the conditions (4)-(6) are
evaluated at the values of the integrals h J2, ... , Js that correspond to the extremum of the
variational problems (1), (2). Consequently, (3) may be regarded as integro-differential equa
tions. t The conditions (4)-(6) are easily generalized to the case when the jumps in the
derivatives of various components of vector u occur at different values of the independent
variable.

The Euler eqns (3) written in the intervals [xo, x*), (x*, Xl] form a system of 2n integro
differential equations each of which is of the fourth order. For determining the 8n constants of
integration of this system and the unknown quantity x* we have 4n boundary conditions at the ends
of the interval [xo, xd, (3n + 1) Weierstrass-Erdmann conditions (4)-(6) and n continuity conditions
of the components of vector-function u at the point X = n, i.e. in all (8n + 1) conditions for
determining an equal number of unknowns. We thus arrive at a closed (multipoint) boundary value
problem for a system of integro-differential equations.

It should be noted that the above considerations were essentially independent of the type of
boundary conditions. Therefore, the relations (3)-(6) will be used later for boundary value
problems of a different type, too.

In the examples considered below the minimum of the functional F is sought subject to certain
isoperimetric conditions. In deriving Euler equations and other necessary stationary conditions
these latter are taken into account in the usual manner through the use of Lagrange multipliers.

2. OPTIMAL BENDING RIGIDITY OF A PLATE
Let us consider the problem of an infinitely long (along y-direction) rectangular plate built-in

along the edges Ixl = 1and subject to a uniformly distributed load (intensity P) along the line of
symmetry x = O. It is evident that the deflection u and other mechanical parameters are
independent of the co-ordinate y. Consequently, we restrict ourselves to the plane y = O. The
load intensity P * necessary to cause the point x =0, y =0 to deflect by a given amount uo will
be treated as a measure of the bending stiffness of the plate. Let h(x) denote the thickness
variation of the plate. The problem under consideration consists in finding the continuous
thickness variation function h(x) that satisfies the isoperimetric equality

and maximizes the integral

Lh(x)dx = S (7)

(8)

tThe integro·differential form of writing the necessary stationary conditions is convenient for developing efficient
numerical schemes for solving variational problems. The simplest iterative algorithm may be obtained, if the quantities Fl.
entering the expressions (3)-(6) are determined from the moth approximation

Fl. = F;,(J,(u'm'), . .. ,J,(u'm')

to the unknown vector-function u, whilst in determining the rest of the quantities r, or/au', or/au,', or/au:" ... ,u is set
to equal to u'm>".
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subject to the conditions
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u(O) == uo, u(-l) = u(l) = uAl) = uA-1) =0, (9)

where Uo and S are given numbers. The values of m and Km depend upon the type of plate. The
particular cases of m = 1, K 1 =EH2/4(1- ,/) and m =3, E3 =E/12(1- ,,2) considered below cor
respond to sandwich and solid plates, respectively. Here, E is the modulus of elasticity,
v-Poisson's ratio and H-the constant core thickness of the sandwich plate. For a solid plate
(m = 3)h(x) refers to the thickness variation, while for a sandwich plate 4h(x) refers to the
variable thickness of facets. (For a detailed discussion of the problem (7)-(9), see [II]).

The necessary stationary conditions for the problem (7)-(9) with respect to u and hare
easily shown to be

(10)

where ,\ 2 is a number. The first of these conditions should be satisfied throughout the interval
[-I, l] except for x = 0 and the points X*i of the jump in the derivatives, whereas the second
condition should be satisfied throughout this interval. At the points X*i where there is a jump in
the derivatives of the function u(x) the optimal solution should fulfill Weierstrass-Erdmann
conditions (4)-(6), which in the present problem take the form

(11)

(12)

It should be noted that, if the singular point coincides with x = 0 (point of application of the
load) at which the condition u = uo is specified, then the second of the two conditions (11) and
the condition (12) drop out (for in the expression for the variation of the functional the
corresponding terms are absent). Therefore, the case when X*i = 0 needs separate treatment.

The conditions (11) have a simple physical meaning. At the singular points the bending
moment M = h"'uxx vanishes, but the shear force Q = (hmuxx)x varies continuously.

It follows from (10) and (11) that the thickness function h(x) satisfies the following
conditions at the singular points

(13)

Let us analyse the relations (13). The first term in (12), in view of the optimality conditions
(10), takes the form hmu~ = ,\ 2h and is continuous, since the function h(x) is continuous. Thus
(12) reduces to

(14)

Keeping in view the second of the two relations (11), we can conclude that the condition (14)
will be observed, if either

(15)

or

(16)

That (14) are the necessary optimality conditions was also shown by Masur[l2] and their
sufficiency is implied in [9J for the sandwich plate.

Let us show that (16) cannot be realised in the optimal solution sought here. In fact, from
the relations (10), (13) and (16) we have the following differential equation and boundary
conditions for determining h

(17)
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It is easily seen that the above boundary-value problem for the function h(x) does not have
a non-trivial solution. Consequently, at the singular points the condition (15) must be satisfied.
The optimal thickness distribution should be such that the deflection function has a continuous
first derivative, while the higher order derivatives may be discontinuous at the singular points
(X*i T' 0).

In the present optimization problem elementary considerations lead to the conclusion that
the number of singular points cannot exceed two. In order to prove this let us assume the
contrary, viz. that the optimal solution has three or more singular points. From the symmetry of
the problem it is evident that the singular points in the interval [-I, I] should be located
symmetrically relative to the point of application of the load x = O. By making a judicious
choice of comparison functions u(x) in the variational problem (7)-(9) it is easy to show that,
for any thickness distribution h(x), the functional being maximized is equal to zero P *=

P(h) = 0 (as an admissible function u(x) we may, for example, choose a continuous, piecewise
linear function for which I~, hmu~x dx = 0). This fact has a simple physical meaning. If the points
with h = 0 are treated as hinges, we have a system which cannot be in equilibrium whatever the
value of P. Therefore, the number of singular points cannot exceed two.

2.1 Sandwich plate m = 1
In this case the equilibrium equations and the optimality condition (10) take the form

(18)

From the second of the two eqns (18) and the conditions (9) it is easily seen that a
continuous, twice differentiable function u(x) does not exist. Therefore, we shall seek a
solution u(x) in the class of functions having discontinuous derivatives. From symmetry
considerations it follows that the singular points in the optimal solution are located sym
metrically relative to the origin (X*l - X*2). All the formulae are thus presented only for the
region [-1,0]. From the second eqn (18) and the conditions (9) the deflection function may be
obtained to within a constant X*l. However, by utilizing the conditions (15), we obtain
X*l = -l/2. The expressions for the deflection function and the load intensity (functional being
maximized) are

u = 2uo(1 +yr (-/~x~-l/2)

u = uo( 1- 21~)' (-1/2 ~ x ~ 0)

A =4uol-2
,

P *=KISA 2UO-1 = 16KtSuor4
•

(19)

It may be noted that P * can be found without a knowledge of h(x). The latter is found from
the first eqn (18), the isoperimetric condition (7) and the relations at the singular points (13)

h = -~(x +~), (-I ~x ~ -l/2)

h = ~(x +D, (-l/2 ~x ~ 0). (20)

Having considered the special case X*I = -X*2 = 0 separately and performed corresponding
calculations, we obtain a lesser value of the load P *= 4K ISUor4

• Consequently, the solution
(19), (20) is the optima1.t The result is well-known[9].

tIt should be mentioned that in the given case (m = I) the stationary conditions employed to arrive at tbe solution (19),
(20) are not only necessary, but also sufficient conditions of optimality[9]. .
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2.2 Solid plate m := 3
As in the preceding example, we restrict ourselves to the interval -I.,;; x .,;; O. From the

relations (10) we obtain the following equation describing the deflection distribution in the
optimal plate

(u;})xx := 0, (21)

Let us integrate eqn (21) in each of the intervals [-I,x*.] and [X*"O] and determine the
eight constants of integration from the boundary conditions and the relations at the singular
points

u(-l) =u.(-l) = u.(O):= 0, u(O):= Uo,

(u;}r := (u;}r:= 0, (U;x2)~ _(U;.2):, [u]~:= O. (22)

The last four relations follow from (10), (11) and the continuity condition of the function
u(x). The deflection function will depend on the co-ordinate of the singular point x*I which is
determined from the condition (15) and turns out to be x*I := -1/2. The deflection function
finally takes the form

3\./(2)Uo[ 1(/) 2{( I )312 (/)3/2}]u:= 13/2 V Z (x+l)+3 -Z-x - 2" ,-I,,;;x";;-1/2

3\/(2)Uo[ 1(1) 2{(/)3/2 / 3/2}] 1/2u = 13/2 "2" x +3 2" - (x +12) + Uo, - ~ x ~ O. (23)

The optimal thickness distribution and the corresponding value of load intensity (a well
known result[9]), found from the relations (7), (8), (10) and (23), are

h := ~f~(-I - 2n ' -I ~ x ~ -1/2

h := ~f~[(1+ ~X)]. -1/2 .,;; x .,;; 0 (24)

Having made similar calculations for the special case X*' := X*2 = 0, we arrive at a lesser
value of the load intensity

3. OPTIMAL SHAPE OF AN AXIALLY COMPRESSED BAR

As an additional illustration let us consider the problem of stability of an axially compressed
(load P) elastic bar of length I. The bar is assumed to be built-in at x := 0 and pinned at x := I.
Let h(x) denote the thickness variation along the length of the bar and u(x) the deflection from
the initial straight configration. The problem consists in finding the shape of the bar that can
sustain the maximum load without loss of stability. By using Rayleigh principle the problem is

tAstudy of the variation in P for any arbitrary position of the singular point x* ,(-I .. X*' .. 0), i.e. in the absence of the
optimality condition (15) gives

whence it directly follows that the maximum of P(X*,) is achieved at X*, =-1/2, and is given by P =81K,S'u./41". It may be
noted that for X*' .... Oas well as x*, .... - 1 the value of P decreases monotonically and tends to approach in both cases to
p = 81K,S'u.J6416

•
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reduced to finding the continuous thickness distribution that satisfies the isoperimetric condition

f h(x)dx = S

and maximizes the functional (critical load)

subject to the conditions

(25)

(26)

(27)

In the given problem the complete set of necessary optimality conditions (3H6) takes the
following form

(hmuxxt = (hmuxxf =0, [Km(hmuxx)x +PUx]-+ =0,

[Pu/ - Kmhm-Iu~x +2ux(Kmhmuxx)x]~ = o.

(28)

(29)

(30)

(The parameter Km here is obviously different from the previous one.) Conditions (29) and (30)
must be fulfilled at the points of discontinuity x = x*; in the derivatives. Following arguments
similar to those used previously it is easy to show that the optimal solution does not have more
than one singular point and that conditions (30), together with (28) and (29), lead to the equality
(15) which will be used later to determine the position of the singular point.

For simplicity we present the solution for the special case m = 1. From the optimality
condition u~x = A2 and the boundary conditions (27) it is easily verified that there does not exist
a non-trivial, (u ~ 0), twice differentiable function. Thus, the solution will have discontinuities in
the derivatives, and in seeking it the conditions (15), (29) must be used together with the eqns
(28). At the point of discontinuity x = x* in the derivatives of u(x), as is clear from the relations
(29) and the first eqn (28), the following equalities should be satisfied

(31)

For determining the deflection function of the optimal bar and the position of the singular
point we utilize the equation u~ =A2 (u•• =- A for x :s;; x* and u•• =A for x* :s;; x :s;; I), the first
three boundary conditions (27) and the compatibility conditions at the singular point, viz.
u+ = u-, (uxt = (ux)-' Performing some elementary calculations, we find the deflection func
tion

(32)

Ax Af
u =T[x-2(2-V2)l]+T(2-2V2), x*:s;;x:s;;l,

and the position of the singular point x* = l(V(2) - 1)/V(2). The critical load calculated from
(26), (28) and (32) is given by P = 6KmS/(3V(2)-4W. The thickness function hex) in each of
the intervals 0 < x < x*, x*< x < 1is determined from (28) with m = 1, viz. hxx +P K 1-I = O. For
evaluating the constants of integration we have the three conditions (31) at the singular point.
The fourth condition h(l) =0 follows from the equations u~ =A2 and (huxx)I._1 =O. Finally, we
get

SS Vol. 13, No. 8-C

h = (3V(~:- 4W [l(1-J2) -xJrx + l(V2-1)], 0<x <x*

h = (3V~~ 4W [x -l(1-J2)](1- x), x*< x < l. (33)
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4. CONCLUSIONS

From the general mathematical considerations and the solution of illustrative examples it is
evident that to pick out the unique optimal solution there is no need for making any additional
assumptions, the position of singular points being determined by Weierstrass-Erdmann corner
conditions.

In the present work we considered the simplest structural optimization problems which were
described by ordinary differential equations and lent themselves to an analytical treatment. In
more complex situations when an analytical solution is not feasible and one has to resort to
numerical techniques, the use of Weierstrass-Erdmann conditions becomes that much more
relevant.

In the examples treated above the number of singular points does not exceed two. However,
already in the optimal design problem of a bar on an elastic foundation with stability constraint
the instability mode can have any number of such points depending upon the stiffness of the
foundation. In this problem, too, Weierstrass-Erdmann conditions permit us to determine the
number and position of the singular points.

Finally, in the optimal design of two-dimensional structures (plates and shells) where the
equations degenerate along whole lines the solution may be sought by using, for example,
gradient methods which utilize Weierstrass-Erdmann conditions.
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APPENDIX
In the main body of the text the stationary conditions of a functional were obtained by using classical variational

calculus. We present here an alternate derivation of these conditions by employing concepts from the optimal control
theory (see, e.g. [13]). However, for the sake of brevity we consider only the case of a scalar function u(x).

Let us introduce a new set of variables z', Z2.... z', z'·', Z.<+2 governed by the following system of differential
equations and boundary conditions

z; =!,(x, z"", ZH2), z'(xo) =0, i =1,2, .... s

(All

Here Z,·2 = u" and the variable v which is related to u through v =zx,+2 =u" plays the role of the control function. In
terms of the new variables the functional which is being maximized takes the form

J = F(z'(x,), z'(x,), ... , z'(x,». (A2)

Thus, we arrive at the optimal control problem for the system (AI) whose functional is a function of the phase
co-ordinates z' (i =1,2, ... , s) at a finite point x =x, (the Maier problem).

The Hamiltonian for the system (AI) and the functional (A2) is defined by

H =i pi!, +pH'Z'" +p'+'V.
(= 1

(A3)
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where pi denote conjugate variables which satisfy the following system of differential equations

p:=O, i=I.2•...• 5

733

(A4)

From (A4) it follows that the conjugate functions pi are constants. At the point x = x, these functions satisfy
transversality conditions p'(x,) =(aF/azi)lx~", Consequently. the following relations hold at the extremals

. (aF)1 .p' = -. • I = 1.2, .... 5.az x -XI

For the problem under consideration the optimality condition aH/av = 0 takes the form

(A5)

(A6)

Differentiating (A6) with respect to x and eliminating from the resulting expression p:;2 by using the last eqn (M). we
get

, ,[(af') (af') af' ]_~ p at;" xx - az'+2 x +az'+' -0.

Furthermore. by taking into account (A5) and returning to the original variables. we get the equation

, [( af' ) (af') af']LF - -- +-=0
j = 1 J

1 aUn xx aux.x au ' (A7)

which coincides with the Euler eqn (3) derived in the text.
If at some point x= x. of the optimal solution there is a discontinuity in the variable Zx+2, i.e. in the first derivative of

the function u(x), then at this point the following necessary optimality conditions must be fulfilled

[p'(x.lr = [p'(x.W, i = 1.2•... ,5 + I

[p'+2(X.lr = [px+2(X.W = o.
[H(x.lr = [H(x.W. [H,(x.lr = [H,(x.W.

By using the relations (A3)-(A6). the conditions (A8) may be written in the following form

(
• aF af')- (. aF af')+
L~- = L~- =0
i-I az' av i-I az' av •

[ , aF((af') _~)]+ =;? az' av, az" 2 _ o.

[i a~{f' - vaf' - Z.<+2( at~2 - (af') )}]' = o.'-I az av az av x _

(A8)

(A9)

(AlO)

(All)

It is easily seen that in the original variables conditions (A9)-(AII) coincide with (4)-(6) derived in the text.


